

DIGITAL SYSTEM MODEL

DIGITAL SYSTEM MODEL

Receiver

$\mathsf{BER} = \mathsf{f}(\mathsf{E}_{\mathsf{b}}/\mathsf{N}_{\mathsf{o}})$

Scrambling

At receiver side clock timing for bit detection is extracted from data symbol transitions. Long data streams of 0`s and 1`s can result in the loss of data synchronization.

Digital data scrambling at transmitter side provides a data symbol transition probability close to 0.5. At receiver side descrambling is performed to restore original data.

Scrambler also removes any periodic pattern in the baseband pulses. Hence it cancels any discrete line component in the modulated RF spectrum. Scrambling is an energy dispersal technique.

Types of digital modulation

- •ASK Amplitude Shift Keying
- •FSK Frequency Shift Keying
- •PSK Phase Shift Keying
- •QAM Quadrature Amplitude Modulation

AMPLITUDE MODULATION

- Envelope amplitude not used to carry information becouse of non-linear effects

PHASE MODULATION

- good performance
- approx. constant envelope
- phase noise is a problem
- carrier tracking is required (coherent case)
- non-coherent demod. has implementation penalty

FREQUENCY MODULATION

- constant envelope
- carrier tracking not necessery
- insensitive to phase noise

Spectral Efficiency

$\Gamma = R/B$ [bit/sHz]

- **R** transmitted bit rate
- **B** the bandwidth occupied by the carrier

The *spectral efficiency* expresses the ability of the modulated carrier to convey a given bit rate within a given bandwidth.

M-ary Modulation

The Encoder provides a one-to-one mapping of the channel symbols. Each channel signal conveys m bits:

 $T_{\rm S} = mT_{\rm b}$ where $T_{\rm S}$ and $T_{\rm b}$ are bit and symbol durations $R_{\rm S} = R_{\rm b}/m$

Digital Phase Modulation is well suited to the satellite link as it offers:

- constant envelope
- high bandwidth efficiency

Main PSK types used:

- **BPSK** biphase phase shift keying (M=2)
- QPSK quadriphase phase shift keying (M=4)
 OQPSK offset QPSK
 π/4QPSK

For BPSK and QPSK: BER = $1/2 \text{erfc} \sqrt{E_b/N_0}$

When considering M-ary PSK (M>2) the error rate performance can be specified in terms of the symbol error rate (SER), and approximate relationship is: BER = SER/log₂(M)

Coherent demodulation

Differential demodulation

Warsaw University of Technology

Modulation and coding

Error Detection/Correction Techniques

• **ARQ** - Automatic Repeat on Request

- FEC Forward Error Correction
 - block codes
 - convolutional codes
 - turbo codes

Warsaw University of Technology

ARQ and FEC Techniques

Channel encoder inserts redundancy bits for purposes of error control and error correction.

Code rate k = n/(n+r)

$$R_c = R_b/k$$

5.8dB

5.3dB

4.9dB

Code rate

k 1

7/8

3/4

2/3

1/2

Warsaw University of Technology

Coding Gain

3.8dB

4.3dB

4.7dB

Convolutional Encoder

Warsaw University of Technology

Modulation and coding

Convolutional Code

Warsaw University of Technology

Modulation and coding

Convolutional Code

Warsaw University of Technology

Modulation and coding

Turbo Encoder

Warsaw University of Technology

Modulation and coding

Turbo Decoder

